clean_metadata()
In our “Getting started” tutorial, we worked with a set of files that matched the expected metadata patterns. However, this is probably not going to be the case much of the time.
Here we’ll go over how to customize ARUtools functions to work with your data.
For example, let’s assume your files look like this, with two recordings, one at Site 100-a45 May 4th 2020 at 5:25 am with ARU unit S4A1234. The other at Site 102-b56 on the same day but at 5:40 am with ARU unit S4A1111.
f <- c(
"site100-a45/2020_05_04_05_25_00_s4a1234.wav",
"site102-b56/2020_05_04_05_40_00_s4a1111.wav"
)
If we try to clean this with the default arguments, we’re going to have some problems.
clean_metadata(project_files = f)
#> Extracting ARU info...
#> Extracting Dates and Times...
#> Identified possible problems with metadata extraction:
#> ✖ No times were successfully detected (2/2)
#> ✖ No ARU ids were successfully detected (2/2)
#> ✖ No sites were successfully detected (2/2)
#> # A tibble: 2 × 11
#> file_name type path aru_id manufacturer model aru_type site_id tz_offset
#> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr>
#> 1 2020_05_04_0… wav site… <NA> Wildlife Ac… Song… SongMet… <NA> <NA>
#> 2 2020_05_04_0… wav site… <NA> Wildlife Ac… Song… SongMet… <NA> <NA>
#> # ℹ 2 more variables: date_time <dttm>, date <date>
First let’s talk a bit about how clean_metadata()
extracts information.
This function uses regular expressions to match specific text patterns in the file path of each recording. Regular expressions are really powerful, but also reasonably complicated and can be confusing.
For example, by default, clean_metadata()
matches site
ids with the expression ((Q)|(P))(())(_|-)(()).
Yikes!
Broken down, that means look for a “Q” or “P”
(((Q)|(P))
) followed by two digits (\\d{2}
)
followed by a separator, either _
or
-
(_|-
) followed by a single digit
(\\d{1}
).
This clearly doesn’t define the sites in our example here. You can supply your own regular expression, instead.
m <- clean_metadata(project_files = f, pattern_site_id = "site\\d{3}-(a|b)\\d{2}")
#> Extracting ARU info...
#> Extracting Dates and Times...
#> Identified possible problems with metadata extraction:
#> ✖ No times were successfully detected (2/2)
#> ✖ No ARU ids were successfully detected (2/2)
m
#> # A tibble: 2 × 11
#> file_name type path aru_id manufacturer model aru_type site_id tz_offset
#> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr>
#> 1 2020_05_04_0… wav site… <NA> Wildlife Ac… Song… SongMet… site10… <NA>
#> 2 2020_05_04_0… wav site… <NA> Wildlife Ac… Song… SongMet… site10… <NA>
#> # ℹ 2 more variables: date_time <dttm>, date <date>
m$site_id
#> [1] "site100-a45" "site102-b56"
However, with sites that follow a reasonable pattern of a prefix, followed by digits and optionally a suffix with digits, it might be easier to use a helper function to create the regular expression for you.
For example, to create a site id pattern we can use
create_pattern_site_id()
.
We specify the prefix
text as well as how many digits we
might expect, a separator, suffix
text and how many suffix
digits there might be.
pat_site <- create_pattern_site_id(
prefix = "site", p_digits = 3,
sep = "-",
suffix = c("a", "b"), s_digits = 2
)
pat_site
#> [1] "((site))((\\d{3}))(-)((b)|(a))((\\d{2}))"
m <- clean_metadata(project_files = f, pattern_site_id = pat_site)
#> Extracting ARU info...
#> Extracting Dates and Times...
#> Identified possible problems with metadata extraction:
#> ✖ No times were successfully detected (2/2)
#> ✖ No ARU ids were successfully detected (2/2)
m$site_id
#> [1] "site100-a45" "site102-b56"
It can be useful to look at the default patterns in the functions to see what might be different in your data.
See ?create_pattern_date
or any
create_pattern
function to pull up the documentation and
explore the defaults as well as examples.
It can also be useful to test out a pattern before running all your files.
We can use the test_pattern()
function to see if our
pattern successfully extracts the site id from the first file in our
list.
Let’s continue customizing our metadata patterns by specifying ARU ids, dates and times.
pat_aru <- create_pattern_aru_id(arus = "s4a", n_digits = 4)
m <- clean_metadata(
project_files = f,
pattern_site_id = pat_site,
pattern_aru_id = pat_aru,
pattern_dt_sep = "_"
)
#> Extracting ARU info...
#> Extracting Dates and Times...
m
#> # A tibble: 2 × 11
#> file_name type path aru_id manufacturer model aru_type site_id tz_offset
#> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr>
#> 1 2020_05_04_0… wav site… s4a12… Wildlife Ac… Song… SongMet… site10… <NA>
#> 2 2020_05_04_0… wav site… s4a11… Wildlife Ac… Song… SongMet… site10… <NA>
#> # ℹ 2 more variables: date_time <dttm>, date <date>
Depending on your date formatting, you may also need to specify the order of the year, month and day, in addition to changing the pattern.
clean_metadata(
project_files = f,
pattern_dt_sep = "_",
pattern_date = create_pattern_date(order = "mdy"),
order_date = "mdy"
)
#> Extracting ARU info...
#> Extracting Dates and Times...
#> # A tibble: 2 × 11
#> file_name type path aru_id manufacturer model aru_type site_id tz_offset
#> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr>
#> 1 05042020_052… wav P01-… S4A12… Wildlife Ac… Song… SongMet… P01-1 <NA>
#> 2 05042020_054… wav P01-… S4A11… Wildlife Ac… Song… SongMet… P01-1 <NA>
#> # ℹ 2 more variables: date_time <dttm>, date <date>
Note that you need to specify it once when making the pattern, and then again when telling the function how to turn the extracted text into a date.
You can specify more than one order with
c("mdy", "ymd")
, but only do this if you know you
have multiple orders in the file names. In particular, try to avoid
using both mdy
and dmy
. Some of these dates
can be ambiguous (for example, what order is 05/05/2020?) and may not be
parsed correctly in these situations.
f <- c(
"P01-1/05042020_052500_S4A1234.wav",
"P01-1/05042020_054000_S4A1111.wav",
"Site10/2020-01-01T09:00:00_BARLT100.wav",
"Site10/2020-01-02T09:00:00_BARLT100.wav"
)
Sometimes your files may use more than one pattern. You can address this problem in one of two ways.
One option is to run clean_metadata()
twice and
then join the outputs
m1 <- clean_metadata(
project_files = f,
pattern_dt_sep = "_",
pattern_date = create_pattern_date(order = "mdy"),
order_date = "mdy"
)
#> Extracting ARU info...
#> Extracting Dates and Times...
#> Identified possible problems with metadata extraction:
#> ✖ Not all dates were successfully detected (2/4)
#> ✖ Not all times were successfully detected (2/4)
#> ✖ Not all ARU ids were successfully detected (2/4)
#> ✖ Not all sites were successfully detected (2/4)
m1 <- filter(m1, !is.na(date_time)) # omit ones that didn't work
m1
#> # A tibble: 2 × 11
#> file_name type path aru_id manufacturer model aru_type site_id tz_offset
#> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr>
#> 1 05042020_052… wav P01-… S4A12… Wildlife Ac… Song… SongMet… P01-1 <NA>
#> 2 05042020_054… wav P01-… S4A11… Wildlife Ac… Song… SongMet… P01-1 <NA>
#> # ℹ 2 more variables: date_time <dttm>, date <date>
m2 <- clean_metadata(
project_files = f,
pattern_site_id = create_pattern_site_id(prefix = "Site", s_digits = 0),
pattern_aru_id = create_pattern_aru_id(n_digits = 3)
)
#> Extracting ARU info...
#> Extracting Dates and Times...
#> Identified possible problems with metadata extraction:
#> ✖ Not all dates were successfully detected (1/4)
#> ✖ Not all times were successfully detected (2/4)
#> ✖ Not all sites were successfully detected (2/4)
m2 <- filter(m2, !is.na(date_time)) # omit ones that didn't work
m2
#> # A tibble: 2 × 11
#> file_name type path aru_id manufacturer model aru_type site_id tz_offset
#> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr>
#> 1 2020-01-01T0… wav Site… BARLT… Frontier La… BAR-… BARLT Site10 <NA>
#> 2 2020-01-02T0… wav Site… BARLT… Frontier La… BAR-… BARLT Site10 <NA>
#> # ℹ 2 more variables: date_time <dttm>, date <date>
m <- bind_rows(m1, m2)
m
#> # A tibble: 4 × 11
#> file_name type path aru_id manufacturer model aru_type site_id tz_offset
#> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr>
#> 1 05042020_052… wav P01-… S4A12… Wildlife Ac… Song… SongMet… P01-1 <NA>
#> 2 05042020_054… wav P01-… S4A11… Wildlife Ac… Song… SongMet… P01-1 <NA>
#> 3 2020-01-01T0… wav Site… BARLT… Frontier La… BAR-… BARLT Site10 <NA>
#> 4 2020-01-02T0… wav Site… BARLT… Frontier La… BAR-… BARLT Site10 <NA>
#> # ℹ 2 more variables: date_time <dttm>, date <date>
With this approach you should check that the number of files in the end matches the number you expect.
Another option is to supply multiple patterns to
clean_metadata()
or to the
create_pattern_XXX()
functions
m <- clean_metadata(
project_files = f,
pattern_dt_sep = c("_", "T"),
pattern_date = create_pattern_date(order = c("ymd", "mdy")),
order_date = c("ymd", "mdy"),
pattern_aru_id = create_pattern_aru_id(n_digits = c(3, 4)),
pattern_site_id = create_pattern_site_id(
prefix = c("P", "Site"),
sep = c("-", ""),
s_digits = c(1, 0)
)
)
#> Extracting ARU info...
#> Extracting Dates and Times...
m
#> # A tibble: 4 × 11
#> file_name type path aru_id manufacturer model aru_type site_id tz_offset
#> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr>
#> 1 05042020_052… wav P01-… S4A12… Wildlife Ac… Song… SongMet… P01-1 <NA>
#> 2 05042020_054… wav P01-… S4A11… Wildlife Ac… Song… SongMet… P01-1 <NA>
#> 3 2020-01-01T0… wav Site… BARLT… Frontier La… BAR-… BARLT Site10 <NA>
#> 4 2020-01-02T0… wav Site… BARLT… Frontier La… BAR-… BARLT Site10 <NA>
#> # ℹ 2 more variables: date_time <dttm>, date <date>
Which approach you should use depends on the situation.
The first approach means that the patterns being matched are more rigid. There is less of a chance of accidentally matching an incorrect pattern. However, there is a chance of omitting files that don’t match either pattern.
The second approach is more flexible in matching patterns and allows you to do so all in one step, which is convenient. However, the more flexible a pattern is, the more opportunities there are to get incorrect matches and date parsing.
With both approaches, it is important to double check the results and make sure the ids and date/times make sense.
check_meta(m)
#> # A tibble: 3 × 11
#> site_id aru_type aru_id type n_files n_dirs n_days min_date
#> <chr> <chr> <chr> <chr> <int> <int> <int> <dttm>
#> 1 P01-1 SongMeter S4A1111 wav 1 1 1 2020-05-04 05:40:00
#> 2 P01-1 SongMeter S4A1234 wav 1 1 1 2020-05-04 05:25:00
#> 3 Site10 BARLT BARLT100 wav 2 1 2 2020-01-01 09:00:00
#> # ℹ 3 more variables: max_date <dttm>, min_time <time>, max_time <time>
check_meta(m, date = TRUE)
#> # A tibble: 4 × 10
#> site_id aru_type aru_id type date n_files n_dirs n_days min_time
#> <chr> <chr> <chr> <chr> <date> <int> <int> <int> <time>
#> 1 P01-1 SongMeter S4A1111 wav 2020-05-04 1 1 1 05:40
#> 2 P01-1 SongMeter S4A1234 wav 2020-05-04 1 1 1 05:25
#> 3 Site10 BARLT BARLT100 wav 2020-01-01 1 1 1 09:00
#> 4 Site10 BARLT BARLT100 wav 2020-01-02 1 1 1 09:00
#> # ℹ 1 more variable: max_time <time>
check_problems(m)
#> # A tibble: 0 × 6
#> # ℹ 6 variables: path <chr>, aru_id <chr>, site_id <chr>, tz_offset <chr>,
#> # date_time <dttm>, date <date>
unique(m$site_id)
#> [1] "P01-1" "Site10"
unique(m$aru_id)
#> [1] "S4A1234" "S4A1111" "BARLT100"
You may not want to extract meta data for every file in your list or directory. Possibly this is because they’re not relevant recordings, or because you have some formatting issues that make it easier to split into separate groups first.
You can omit files using the subset
and
subset_type
arguments.
To keep only certain files, use the default
subset_type = "keep"
. To omit certain files, use
subset_type = "omit"
.
To keep only files with the “a” prefix (note that ^
means ‘at the start’)
clean_metadata(project_files = example_files, subset = "^a")
#> Extracting ARU info...
#> Extracting Dates and Times...
#> # A tibble: 14 × 11
#> file_name type path aru_id manufacturer model aru_type site_id tz_offset
#> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr>
#> 1 P01_1_202005… wav a_BA… BARLT… Frontier La… BAR-… BARLT P01_1 -0400
#> 2 P01_1_202005… wav a_BA… BARLT… Frontier La… BAR-… BARLT P01_1 -0400
#> 3 P02_1_202005… wav a_S4… S4A01… Wildlife Ac… Song… SongMet… P02_1 <NA>
#> 4 P02_1_202005… wav a_S4… S4A01… Wildlife Ac… Song… SongMet… P02_1 <NA>
#> # ℹ 10 more rows
#> # ℹ 2 more variables: date_time <dttm>, date <date>
To omit all files with the “a” prefix
clean_metadata(project_files = example_files, subset = "^a", subset_type = "omit")
#> Extracting ARU info...
#> Extracting Dates and Times...
#> # A tibble: 28 × 11
#> file_name type path aru_id manufacturer model aru_type site_id tz_offset
#> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr>
#> 1 P01_1_202005… wav j_BA… BARLT… Frontier La… BAR-… BARLT P01_1 -0400
#> 2 P01_1_202005… wav j_BA… BARLT… Frontier La… BAR-… BARLT P01_1 -0400
#> 3 P02_1_202005… wav j_S4… S4A01… Wildlife Ac… Song… SongMet… P02_1 <NA>
#> 4 P02_1_202005… wav j_S4… S4A01… Wildlife Ac… Song… SongMet… P02_1 <NA>
#> # ℹ 24 more rows
#> # ℹ 2 more variables: date_time <dttm>, date <date>
By default clean_metadata()
looks for .wav files. If you
want it to match something else, adjust the file_type
argument.
f <- c(
"a_BARLT10962_P01_1/P01_1_20200502T050000_ARU.mp4",
"a_BARLT10962_P01_1/P01_1_20200503T052000_ARU.mp4"
)
Other wise we’ll run into problems…
clean_metadata(project_files = f)
#> Error in `clean_metadata()`:
#> ! Did not find any 'wav' files.
#> ℹ Use `file_type` to change file extension for sound files
#> ℹ Check `project_dir`/`project_files` are correct
clean_metadata(project_files = f, file_type = "mp4")
#> Extracting ARU info...
#> Extracting Dates and Times...
#> # A tibble: 2 × 11
#> file_name type path aru_id manufacturer model aru_type site_id tz_offset
#> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr>
#> 1 P01_1_202005… mp4 a_BA… BARLT… Frontier La… BAR-… BARLT P01_1 <NA>
#> 2 P01_1_202005… mp4 a_BA… BARLT… Frontier La… BAR-… BARLT P01_1 <NA>
#> # ℹ 2 more variables: date_time <dttm>, date <date>
In some cases identifying what lies before or after a string of interest can help with extracting the pattern of interest. Details of look arounds can be found on the “stringr” package website.
The following code shows a set of files that contain repeated
patterns that match both site and project folders. If we run
clean_metadata()
it fails to detect dates and times.
f <- c(
"//BARLTs/DeploymentProjectXYZsites_202223/XYZBrantAirstrip/20230519_RemoteTrip2223/00015998_20230519T210900-0400_SS23.wav",
"//BARLTs/DeploymentProjectXYZsites_202223/XYZPermafrostPFSC-SP1/20230415_RemoteTrip2223/00015321_20230415T214700-0400_Owls23.wav",
"//BARLTs/DeploymentProjectXYZsites_202223/XYZfoxden30/20230623_RemoteTrip2223/00015370_20230623T062000-0400_SR23.wav",
"//BARLTs/DeploymentProjectXYZsites_202223/XYZfoxden107/20220922_RemoteTrip2223/00016130_20220922T000200-0400_NFC22.wav",
"//BARLTs/DeploymentProjectXYZsites_00202223/XYZfoxden107/20230711_RemoteTrip2223/00016130_20230711T093600-0400_SR23.wav"
)
m <- clean_metadata(
project_files = f,
pattern_site_id = create_pattern_site_id(prefix = "XYZ\\w+", p_digits = 0:3, sep = c("", "-"), s_digits = 0:1),
pattern_aru_id = create_pattern_aru_id(arus = "", n_digits = 8), quiet = T
)
#> Identified possible problems with metadata extraction:
#> ✖ No dates were successfully detected (5/5)
#> ✖ No times were successfully detected (5/5)
Even worse, it returns the wrong site_id
values.
m$site_id
#> [1] "XYZsites_202223" "XYZsites_202223" "XYZsites_202223"
#> [4] "XYZsites_202223" "XYZsites_00202223"
To tackle the site_id
issue we can add a look behind to
clue into the directory before the site_id
always ends with
“202223/”.
m_site_id_fix <- clean_metadata(
project_files = f,
pattern_site_id = create_pattern_site_id(
prefix = "XYZ\\w+", p_digits = 0:3, sep = c("", "-"), s_digits = 0:1,
look_behind = "202223/"
),
pattern_aru_id = create_pattern_aru_id(arus = "", n_digits = 8), quiet = T
)
#> Identified possible problems with metadata extraction:
#> ✖ No dates were successfully detected (5/5)
#> ✖ No times were successfully detected (5/5)
m_site_id_fix$site_id
#> [1] "XYZBrantAirstrip" "XYZPermafrostPFSC" "XYZfoxden30"
#> [4] "XYZfoxden107" "XYZfoxden107"
This corrects the site_id
values but the generic
“pattern_aru_id” means that the clean_metadata()
fails to
detect dates and time as the “pattern_aru_id” is excluded when looking
for dates and times.
m_fix <- clean_metadata(
project_files = f,
pattern_site_id = create_pattern_site_id(
prefix = "XYZ\\w+", p_digits = 0:3, sep = c("", "-"), s_digits = 0:1,
look_behind = "202223/"
),
pattern_aru_id = create_pattern_aru_id(arus = "", n_digits = 8,
sep = "",
look_behind = "RemoteTrip2223/",
look_ahead = "_"),
quiet = T
)
In the end the look arounds helped us pull out stubborn
site_id
vaules and separate overlapping patterns of
aru_id
and dates and times.